论文标题
使用原子轨道的电子结构代码中线性和立方尺度轨道最小化方法的模块化实现
Modular implementation of the linear and cubic-scaling orbital minimization methods in electronic structure codes using atomic orbitals
论文作者
论文摘要
我们提出了一种代码模块化方法,用于设计有效的和平行的立方体和线性缩放求解器,用于使用原子轨道进行电子结构计算。 Siesta代码中证明了轨道最小化方法的模块化实现,其中通过外部库来处理线性代数和并行性问题。 DBCSR和Scalapack库分别用于具有稀疏和致密矩阵的代数操作。最近在电子结构库中开发的矩阵设备和Libomm库,促进了不同矩阵格式之间的切换,并实施了能量最小化。我们显示了比较几种立方尺度算法的性能的结果,还展示了线性尺度求解器的平行性能,以及它们在立方尺寸求解器上的至高无上的覆盖系统,用于绝缘系统,这些系统的尺寸为数百个原子。
We present a code modularization approach to design efficient and massively parallel cubic and linear-scaling solvers for electronic structure calculations using atomic orbitals. The modular implementation of the orbital minimization method, in which linear algebra and parallelization issues are handled via external libraries, is demonstrated in the SIESTA code. The DBCSR and ScaLAPACK libraries are used for algebraic operations with sparse and dense matrices, respectively. The MatrixSwitch and libOMM libraries, recently developed within the Electronic Structure Library, facilitate switching between different matrix formats and implement the energy minimization. We show results comparing the performance of several cubic-scaling algorithms, and also demonstrate the parallel performance of the linear-scaling solvers, and their supremacy over the cubic-scaling solvers for insulating systems with sizes of several hundreds of atoms.