论文标题
基于离散的矢量场估计,在4D CMR中进行心脏相检测的自我监督运动描述符
Self-supervised motion descriptor for cardiac phase detection in 4D CMR based on discrete vector field estimations
论文作者
论文摘要
心脏磁共振(CMR)序列会随着时间的推移可视化心脏功能的体素。同时,基于深度学习的可变形图像注册能够估算离散的向量字段,这些矢量字段将CMR序列的一个时间步骤扭曲成以下方式,以一种自我监督的方式。但是,尽管这些3D+T向量领域中包含的信息来源丰富,但标准化的解释具有挑战性,临床应用仍然有限。在这项工作中,我们展示了如何有效地使用可变形的矢量场来描述派生的1D运动描述符形式的心脏周期的基本动态过程。此外,基于收缩或放松心室的预期心血管生理特性,我们定义了一组规则,可以鉴定五个心血管(ES)(ES)和末端diastole(ED)(ED),而无需使用标记。我们评估了运动描述符在两个具有挑战性的多疾病, - 中心,-Scanner短轴CMR数据集上的合理性。首先,通过报告定量措施,例如提取相的周期性框架差异。其次,通过定性比较一般模式,当我们时间重新采样和对齐两个数据集的所有实例的运动描述符时。我们方法的ED,ES关键阶段的平均定期帧差额为$ 0.80 \ pm {0.85} $,$ 0.69 \ pm {0.79} $,比观察者间可变性($ 1.07 \ pm {0.86} $,$ 0.91,$ 0.91 \ pm {1.6} $ {1.61 \ pm {1.6} $ {1.07 \ pm {1.6} $ {1.61 \ pm {1.61 $ {1.6} $ {1.6} $ {1.6} $ {1.6} $ {1.6} $ ($ 1.18 \ pm {1.91} $,$ 1.21 \ pm {1.78} $)。代码和标签将在我们的GitHub存储库中提供。 https://github.com/cardio-ai/cmr-phase-detection
Cardiac magnetic resonance (CMR) sequences visualise the cardiac function voxel-wise over time. Simultaneously, deep learning-based deformable image registration is able to estimate discrete vector fields which warp one time step of a CMR sequence to the following in a self-supervised manner. However, despite the rich source of information included in these 3D+t vector fields, a standardised interpretation is challenging and the clinical applications remain limited so far. In this work, we show how to efficiently use a deformable vector field to describe the underlying dynamic process of a cardiac cycle in form of a derived 1D motion descriptor. Additionally, based on the expected cardiovascular physiological properties of a contracting or relaxing ventricle, we define a set of rules that enables the identification of five cardiovascular phases including the end-systole (ES) and end-diastole (ED) without the usage of labels. We evaluate the plausibility of the motion descriptor on two challenging multi-disease, -center, -scanner short-axis CMR datasets. First, by reporting quantitative measures such as the periodic frame difference for the extracted phases. Second, by comparing qualitatively the general pattern when we temporally resample and align the motion descriptors of all instances across both datasets. The average periodic frame difference for the ED, ES key phases of our approach is $0.80\pm{0.85}$, $0.69\pm{0.79}$ which is slightly better than the inter-observer variability ($1.07\pm{0.86}$, $0.91\pm{1.6}$) and the supervised baseline method ($1.18\pm{1.91}$, $1.21\pm{1.78}$). Code and labels will be made available on our GitHub repository. https://github.com/Cardio-AI/cmr-phase-detection