论文标题
几乎所有$ k $ -sat功能都是联合国
Nearly all $k$-SAT functions are unate
论文作者
论文摘要
我们证明,对于任何固定的正整数$ k $,AS $ n \ to \ infty $。这解决了2003年Bollobás,Brightwell和Leader的猜想。
We prove that $1-o(1)$ fraction of all $k$-SAT functions on $n$ Boolean variables are unate (i.e., monotone after first negating some variables), for any fixed positive integer $k$ and as $n \to \infty$. This resolves a conjecture by Bollobás, Brightwell, and Leader from 2003.