论文标题
group-$ k $一致的测量集合鲁棒离群检测最大化
Group-$k$ Consistent Measurement Set Maximization for Robust Outlier Detection
论文作者
论文摘要
本文介绍了一种在同时定位和映射(SLAM)框架中进行可靠测量的方法。现有方法在成对的基础上检查一致性或兼容性,但是在成对场景中,许多测量类型都没有得到足够的约束,以确定是否与其他测量不一致。本文介绍了组-K $一致性最大化(G $ K $ cm),该估计最大的测量值是内部组的 - $ K $一致的。解决最大的组-K $一致测量值的最大集合可以作为广义图上的最大集团问题的实例进行配制,并且可以通过调整当前方法来解决。本文使用模拟数据评估了G $ K $ CM的性能,并将其与以前工作中介绍的成对一致性最大化(PCM)进行比较。
This paper presents a method for the robust selection of measurements in a simultaneous localization and mapping (SLAM) framework. Existing methods check consistency or compatibility on a pairwise basis, however many measurement types are not sufficiently constrained in a pairwise scenario to determine if either measurement is inconsistent with the other. This paper presents group-$k$ consistency maximization (G$k$CM) that estimates the largest set of measurements that is internally group-$k$ consistent. Solving for the largest set of group-$k$ consistent measurements can be formulated as an instance of the maximum clique problem on generalized graphs and can be solved by adapting current methods. This paper evaluates the performance of G$k$CM using simulated data and compares it to pairwise consistency maximization (PCM) presented in previous work.