论文标题

超级耦合的量子光系统系统中的浆果阶段和拓扑

Berry Phase and Topology in Ultrastrongly Coupled Quantum Light-Matter Systems

论文作者

Masuki, Kanta, Ashida, Yuto

论文摘要

物质与量子量化的电磁场之间的强耦合已成为在没有外部驱动器的情况下控制物质相的可能途径。我们开发了一个忠实有效的理论框架,以分析材料中量子的几何形状和拓扑结构,并在二维中超构成与空腔电磁场。形式主义使我们能够在Ultrastrong and teep lott强耦合方面准确评估几何和拓扑数量,例如浆果相和Chern数量。我们应用一般框架来分析与圆形极化腔模式结合的巨大dirac费物的混凝土模型。出乎意料的是,除了对拓扑阶段的普通过渡外,我们的分析还揭示了深厚耦合方案的定性新功能,即,重进入过渡到拓扑琐事阶段的出现。我们还通过展示了强耦合的光 - 一种系统与Haldane Honeycomb模型之间的统一映射,展示了其直观的理解。

Strong coupling between matter and quantized electromagnetic fields in a cavity has emerged as a possible route toward controlling the phase of matter in the absence of an external drive. We develop a faithful and efficient theoretical framework to analyze quantum geometry and topology in materials ultrastrongly coupled to cavity electromagnetic fields in two dimensions. The formalism allows us to accurately evaluate geometrical and topological quantities, such as Berry phase and Chern number, in ultrastrong and deep strong coupling regimes. We apply our general framework to analyze a concrete model of massive Dirac fermions coupled to a circularly polarized cavity mode. Surprisingly, in addition to an ordinary transition to the topological phase, our analysis reveals a qualitatively new feature in deep strong coupling regimes, namely, the emergence of reentrant transition to the topologically trivial phase. We also present its intuitive understanding by showing the unitary mapping between the low-energy effective theory of strongly coupled light-matter systems and the Haldane honeycomb model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源