论文标题
EM的几何形状和相关的迭代算法
Geometry of EM and related iterative algorithms
论文作者
论文摘要
期望 - 最大化(EM)算法是一种简单的元叠加词,当观察到的数据中缺少测量值或数据由可观察到的数据组成时,它已多年来用作统计推断的方法。它的一般属性得到了充分的研究,而且还有无数方法将其应用于个人问题。在本文中,我们介绍了$ em $ $ and算法,EM算法的信息几何表述及其扩展和应用程序。 Specifically, we will see that it is possible to formulate an outlier-robust inference algorithm, an algorithm for calculating channel capacity, parameter estimation methods on probability simplex, particular multivariate analysis methods such as principal component analysis in a space of probability models and modal regression, matrix factorization, and learning generative models, which have recently attracted attention in deep learning, from the geometric perspective.
The Expectation--Maximization (EM) algorithm is a simple meta-algorithm that has been used for many years as a methodology for statistical inference when there are missing measurements in the observed data or when the data is composed of observables and unobservables. Its general properties are well studied, and also, there are countless ways to apply it to individual problems. In this paper, we introduce the $em$ algorithm, an information geometric formulation of the EM algorithm, and its extensions and applications to various problems. Specifically, we will see that it is possible to formulate an outlier-robust inference algorithm, an algorithm for calculating channel capacity, parameter estimation methods on probability simplex, particular multivariate analysis methods such as principal component analysis in a space of probability models and modal regression, matrix factorization, and learning generative models, which have recently attracted attention in deep learning, from the geometric perspective.