论文标题

GRE:供应链平台的图形跨域建议

GReS: Graphical Cross-domain Recommendation for Supply Chain Platform

论文作者

Jing, Zhiwen, Zhao, Ziliang, Feng, Yang, Ma, Xiaochen, Wu, Nan, Kang, Shengqiao, Yang, Cheng, Zhang, Yujia, Guo, Hao

论文摘要

供应链平台(SCP)为下游行业提供了许多原材料。与传统的电子商务平台相比,由于用户兴趣有限,SCP中的数据更稀少。为了解决数据稀疏问题,可以应用跨域建议(CDR),从而通过源域信息提高目标域的建议性能。但是,将CDR应用于SCP,直接忽略了SCP中商品的层次结构,从而降低了建议性能。为了利用此功能,在本文中,我们以餐饮平台为例,并提出了图形跨域推荐模型GRES。该模型首先构造了树状图,以表示菜肴和成分不同节点的层次结构,然后应用我们提出的Tree2Vec方法将GCN和BERT模型组合到嵌入图中以嵌入图表以获取建议。商业数据集上的实验结果表明,GRES在供应链平台的跨域建议中的最先进方法明显优于最先进的方法。

Supply Chain Platforms (SCPs) provide downstream industries with numerous raw materials. Compared with traditional e-commerce platforms, data in SCPs is more sparse due to limited user interests. To tackle the data sparsity problem, one can apply Cross-Domain Recommendation (CDR) which improves the recommendation performance of the target domain with the source domain information. However, applying CDR to SCPs directly ignores the hierarchical structure of commodities in SCPs, which reduce the recommendation performance. To leverage this feature, in this paper, we take the catering platform as an example and propose GReS, a graphical cross-domain recommendation model. The model first constructs a tree-shaped graph to represent the hierarchy of different nodes of dishes and ingredients, and then applies our proposed Tree2vec method combining GCN and BERT models to embed the graph for recommendations. Experimental results on a commercial dataset show that GReS significantly outperforms state-of-the-art methods in Cross-Domain Recommendation for Supply Chain Platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源