论文标题
在这种情况下,对于有限的实际反射组中的每个抛物线蛋白蛋白准氧气元素,Hurwitz动作对反射因素的轨道的轨道都由两个明显的不变性区分了
In which it is proven that, for each parabolic quasi-Coxeter element in a finite real reflection group, the orbits of the Hurwitz action on its reflection factorizations are distinguished by the two obvious invariants
论文作者
论文摘要
我们证明,当有限的Coxeter组中抛物线的准氧气元素的两个反射因素化属于相同的Hurwitz Orbit,并且仅当它们生成相同的子组并具有相同的共轭类时。作为引理,我们对有限的高速公路组进行了分类,其中每个反射生成的集合在包含在包含的情况下也是最小的大小。
We prove that two reflection factorizations of a parabolic quasi-Coxeter element in a finite Coxeter group belong to the same Hurwitz orbit if and only if they generate the same subgroup and have the same multiset of conjugacy classes. As a lemma, we classify the finite Coxeter groups for which every reflection generating set that is minimal under inclusion is also of minimum size.