论文标题

Weyl Transformation:根据Dirac的大量假设的动态自由度

Weyl transformation: a dynamical degree of freedom in the light of Dirac's Large Number Hypothesis

论文作者

Paul, Prasenjit, Sengupta, Rikpratik, Ray, Saibal

论文摘要

在爱因斯坦的场方程(EFE)中,时空的几何形状与物质分布有关。几何形状或引力部门涉及涉及重力单位的经典宏观物体,而涉及原子单位的量子理论可以更好地描述物质部门。 Bisabr认为,存在两个不同的共形框架中的两个单位系统之间存在一个依赖于时期的转换因子,即。共形因子取决于时期。我们认为,共形转换是一种动态的自由度,描述了它与优雅的退出问题,宇宙常数λ的动力学在通货膨胀中可能相关性,并根据Dirac的大数量假设(LNH)的后果证明了这一论点。

In Einstein's Field Equation(EFE) the geometry of the space-time is connected with the matter distribution. The geometry or the gravitational sector deals with classical macroscopic objects involving gravitational units while the matter sector can be better described by quantum theory involving atomic units. It has been argued by Bisabr that there exists an epoch-dependent conversion factor between these two unit systems present in two different conformal frames,i.e. the conformal factor is epoch dependent. We argue that the conformal transformation is a dynamical degree of freedom describing it's possible relevance in inflation in context to the graceful exit problem, dynamics of the cosmological constant Λ and justify the argument in the light of consequences of Dirac's Large Number hypothesis(LNH).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源