论文标题
使用转移学习的公共停车位检测和地理定位
Public Parking Spot Detection And Geo-localization Using Transfer Learning
论文作者
论文摘要
在世界各地的城市中,找到带有空置停车位的公共停车场是一个主要问题,使通勤时间耗费时间并增加交通拥堵。这项工作说明了如何使用手机摄像机的地理标签图像数据集,可用于导航到约翰内斯堡最方便的公共停车场,并带有可用的停车位,可由神经网络驱动的公共摄像机检测到。这些图像用于微调在Imagenet数据集上预先训练的检测模型,以证明对空置停车位的检测和分割,然后我们将停车场的相应的经度和纬度坐标添加,以根据距离酒不不清的距离和可用停车位的数量向驾驶员推荐最方便的停车场。使用VGG映像注释(VIA),我们使用来自扩展图像数据集的图像,并使用四种不同类型的对象的多边形大纲进行注释:汽车,开放式停车位,人员和汽车号码。我们使用细分模型来确保可以在生产中将数字板遮住,以匿名汽车注册。在汽车和停车位上,我们的联盟盖得分比联盟盖得分分别为89%和82%。这项工作有可能帮助减少通勤者花费的时间来寻找免费的公共停车场,从而减轻购物综合大楼和其他公共场所的交通拥堵,并在公共道路上开车时最大程度地利用人们的效用。
In cities around the world, locating public parking lots with vacant parking spots is a major problem, costing commuters time and adding to traffic congestion. This work illustrates how a dataset of Geo-tagged images from a mobile phone camera, can be used in navigating to the most convenient public parking lot in Johannesburg with an available parking space, detected by a neural network powered-public camera. The images are used to fine-tune a Detectron2 model pre-trained on the ImageNet dataset to demonstrate detection and segmentation of vacant parking spots, we then add the parking lot's corresponding longitude and latitude coordinates to recommend the most convenient parking lot to the driver based on the Haversine distance and number of available parking spots. Using the VGG Image Annotation (VIA) we use images from an expanding dataset of images, and annotate these with polygon outlines of the four different types of objects of interest: cars, open parking spots, people, and car number plates. We use the segmentation model to ensure number plates can be occluded in production for car registration anonymity purposes. We get an 89% and 82% intersection over union cover score on cars and parking spaces respectively. This work has the potential to help reduce the amount of time commuters spend searching for free public parking, hence easing traffic congestion in and around shopping complexes and other public places, and maximize people's utility with respect to driving on public roads.