论文标题

贝叶斯混合多维缩放用于听觉处理

Bayesian Mixed Multidimensional Scaling for Auditory Processing

论文作者

Rebaudo, Giovanni, Llanos, Fernando, Chandrasekaran, Bharath, Sarkar, Abhra

论文摘要

人的大脑通过将声学信号映射到潜在的知觉空间来区分语音。可以通过多维缩放(MDS)估算该空间,从而保留较低维度的相似性结构。但是,个人和群体水平的异质性,尤其是在本地和非本地听众之间,仍然知之甚少。先前的方法通常会忽略这种可变性或无法捕获共享结构,从而限制了原则上的比较。此外,文献通常集中于潜在距离,而不是基础特征本身。为了解决这些问题,我们开发了一种贝叶斯混合MDS方法,该方法既是主题和群体级异质性,从而可以恢复生物学上可解释的潜在特征。模拟和听觉神经科学应用展示了这些特征如何重建观察到的距离并随着个人和语言背景而变化,从而揭示了新颖的见解。

The human brain distinguishes speech sounds by mapping acoustic signals into a latent perceptual space. This space can be estimated via multidimensional scaling (MDS), preserving the similarity structure in lower dimensions. However, individual and group-level heterogeneity, especially between native and non-native listeners, remains poorly understood. Prior approaches often ignore such variability or cannot capture shared structure, limiting principled comparison. Moreover, the literature typically focuses on latent distances rather than the underlying features themselves. To address these issues, we develop a Bayesian mixed MDS method that accounts for both subject- and group-level heterogeneity, enabling recovery of biologically interpretable latent features. Simulations and an auditory neuroscience application demonstrate how these features reconstruct observed distances and vary with individual and language background, revealing novel insights.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源