论文标题
三维旋转对称绝缘子的拓扑场理论:耦合曲率和电磁学
Topological Field Theories of Three-Dimensional Rotation Symmetric Insulators: Coupling Curvature and Electromagnetism
论文作者
论文摘要
量化的响应是理解和表征物质拓扑阶段的普遍特征的重要工具。在这项工作中,我们考虑了$ C_N $晶格旋转对称性沿固定轴的$ 3 $ D中的一类拓扑结晶绝缘子,此外,除了镜面对称性或粒子 - 孔对称性外。这些绝缘子可以实现量化的混合几何形状电荷响应。当这些绝缘子的表面被覆盖时,表面上的脱节带有分数电荷,这是纯$ 2 $ d系统中可能发生的最小量的一半。同样,散装中的披露线具有分数量化的电化极化。这些效果以及其他相关现象是由$ 3 $ D的拓扑响应项捕获的,该响应术语将晶格曲率与电磁场强度结合在一起。此外,具有此响应的镜子对称绝缘子可以平滑地变形为具有量化角电荷的高阶章鱼绝缘子。我们还为拓扑不变式构建了对称指标形式,该形式描述了镜像对称拓扑晶体绝缘子的量化响应,并讨论了时间反向破坏系统中异常的响应量化。
Quantized responses are important tools for understanding and characterizing the universal features of topological phases of matter. In this work, we consider a class of topological crystalline insulators in $3$D with $C_n$ lattice rotation symmetry along a fixed axis, in addition to either mirror symmetry or particle-hole symmetry. These insulators can realize quantized mixed geometry-charge responses. When the surface of these insulators is gapped, disclinations on the surface carry a fractional charge that is half the minimal amount that can occur in purely $2$D systems. Similarly, disclination lines in the bulk carry a fractionally quantized electric polarization. These effects, and other related phenomena, are captured by a $3$D topological response term that couples the lattice curvature to the electromagnetic field strength. Additionally, mirror symmetric insulators with this response can be smoothly deformed into a higher-order octopole insulator with quantized corner charges. We also construct a symmetry indicator form for the topological invariant that describes the quantized response of the mirror symmetric topological crystalline insulators, and discuss an unusual response quantization in time-reversal breaking systems.