论文标题
Cuahn-Vio:视觉惯性探针仪的内容和不确定性的同型同构网络
CUAHN-VIO: Content-and-Uncertainty-Aware Homography Network for Visual-Inertial Odometry
论文作者
论文摘要
基于学习的视觉自我运动估计是有希望的,但尚未准备好在现实世界中浏览敏捷的移动机器人。在本文中,我们提出了Cuahn-Vio,这是一种适用于适用于微型航空车辆(MAVS)的强大而有效的单眼视觉惯性镜(VIO),配备了朝下摄像头。视觉前端是一个内容和不确定性的同型同构网络(CUAHN),它对非主术图像内容和网络预测的失败情况非常强大。它不仅可以预测截然变换,还可以估算其不确定性。培训是自学的,因此它不需要通常难以获得的地面真理。该网络具有良好的概括,可以在新环境中进行“插件”部署而无需微调。轻巧的扩展卡尔曼过滤器(EKF)用作VIO后端,并利用网络中的平均预测和方差估计进行视觉测量更新。 Cuahn-Vio在高速公共数据集上进行了评估,并显示出与最先进的VIO方法的竞争精度。由于运动模糊,低网络推理时间(〜23ms)和稳定的处理延迟(〜26ms)的鲁棒性,Cuahn-Vio成功运行了NVIDIA JETSON TX2嵌入式处理器,以导航快速自动驾驶MAV。
Learning-based visual ego-motion estimation is promising yet not ready for navigating agile mobile robots in the real world. In this article, we propose CUAHN-VIO, a robust and efficient monocular visual-inertial odometry (VIO) designed for micro aerial vehicles (MAVs) equipped with a downward-facing camera. The vision frontend is a content-and-uncertainty-aware homography network (CUAHN) that is robust to non-homography image content and failure cases of network prediction. It not only predicts the homography transformation but also estimates its uncertainty. The training is self-supervised, so that it does not require ground truth that is often difficult to obtain. The network has good generalization that enables "plug-and-play" deployment in new environments without fine-tuning. A lightweight extended Kalman filter (EKF) serves as the VIO backend and utilizes the mean prediction and variance estimation from the network for visual measurement updates. CUAHN-VIO is evaluated on a high-speed public dataset and shows rivaling accuracy to state-of-the-art (SOTA) VIO approaches. Thanks to the robustness to motion blur, low network inference time (~23ms), and stable processing latency (~26ms), CUAHN-VIO successfully runs onboard an Nvidia Jetson TX2 embedded processor to navigate a fast autonomous MAV.