论文标题
DEBIAS BLACK-BOX:通过知识蒸馏的公平排名框架
Debias the Black-box: A Fair Ranking Framework via Knowledge Distillation
论文作者
论文摘要
深度神经网络可以在查询和文档之间捕获复杂的交互历史信息,因为它们具有许多复杂的非线性单元,从而使它们能够提供正确的搜索建议。但是,在现实情况下,服务提供商经常面临更复杂的障碍,例如部署成本限制和公平要求。已经提出了将训练有素的复杂模型(教师)转移到简单模型(学生)的知识的知识蒸馏,以减轻以前的关注,但最佳当前蒸馏方法仅着重于如何使学生模型模仿教师模型的预测。为了更好地促进深层模型的应用,我们建议基于知识蒸馏的公平信息检索框架。该框架可以改善模型的基于暴露的公平性,同时大大降低模型大小。我们在三个巨大数据集上进行的广泛实验表明,我们提出的框架可以将模型尺寸降低到其原始大小的最小1%,同时保持其黑盒状态。它还将公平性能提高15%〜46%,同时保持高水平的建议效率。
Deep neural networks can capture the intricate interaction history information between queries and documents, because of their many complicated nonlinear units, allowing them to provide correct search recommendations. However, service providers frequently face more complex obstacles in real-world circumstances, such as deployment cost constraints and fairness requirements. Knowledge distillation, which transfers the knowledge of a well-trained complex model (teacher) to a simple model (student), has been proposed to alleviate the former concern, but the best current distillation methods focus only on how to make the student model imitate the predictions of the teacher model. To better facilitate the application of deep models, we propose a fair information retrieval framework based on knowledge distillation. This framework can improve the exposure-based fairness of models while considerably decreasing model size. Our extensive experiments on three huge datasets show that our proposed framework can reduce the model size to a minimum of 1% of its original size while maintaining its black-box state. It also improves fairness performance by 15%~46% while keeping a high level of recommendation effectiveness.