论文标题
使用12铅ECG信号应用联合学习技术进行心律失常分类
Application of federated learning techniques for arrhythmia classification using 12-lead ECG signals
论文作者
论文摘要
基于人工智能的大型,精心策划的医疗数据集的分析有望提供早期检测,更快的诊断和使用低功率心电图(ECG)监视设备信息的更有效治疗。但是,由于使用不当,不安全的存储或数据泄漏可能侵犯了一个人的隐私,因此从不同来源访问敏感的医疗数据受到了极大的限制。这项工作使用联合学习(FL)隐私的方法学来训练AI模型,以从从六个异构来源收集的12个铅传感器阵列中培训异质的高清ECG集。与以集中学习(CL)方式训练的最新模型相比,我们评估了所得模型实现等效性能的能力。此外,我们评估了解决方案对独立和相同的分布式(IID)和非IID联合数据的性能。我们的方法涉及基于深层神经网络和长期记忆模型的机器学习技术。它具有功能工程,选择和数据平衡技术的强大数据预处理管道。我们的AI模型表现出与使用CL,IID和非IID方法训练的模型相当的性能。他们展示了减少复杂性和更快训练时间的优势,使它们非常适合云边缘建筑。
Artificial Intelligence-based (AI) analysis of large, curated medical datasets is promising for providing early detection, faster diagnosis, and more effective treatment using low-power Electrocardiography (ECG) monitoring devices information. However, accessing sensitive medical data from diverse sources is highly restricted since improper use, unsafe storage, or data leakage could violate a person's privacy. This work uses a Federated Learning (FL) privacy-preserving methodology to train AI models over heterogeneous sets of high-definition ECG from 12-lead sensor arrays collected from six heterogeneous sources. We evaluated the capacity of the resulting models to achieve equivalent performance compared to state-of-the-art models trained in a Centralized Learning (CL) fashion. Moreover, we assessed the performance of our solution over Independent and Identical distributed (IID) and non-IID federated data. Our methodology involves machine learning techniques based on Deep Neural Networks and Long-Short-Term Memory models. It has a robust data preprocessing pipeline with feature engineering, selection, and data balancing techniques. Our AI models demonstrated comparable performance to models trained using CL, IID, and non-IID approaches. They showcased advantages in reduced complexity and faster training time, making them well-suited for cloud-edge architectures.