论文标题

部分可观测时空混沌系统的无模型预测

Hydrodynamic interactions hinder transport of flow-driven colloidal particles

论文作者

Lips, Dominik, Cereceda-López, Eric, Ortiz-Ambriz, Antonio, Tierno, Pietro, Ryabov, Artem, Maass, Philipp

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

The flow-driven transport of interacting micron-sized particles occurs in many soft matter systems spanning from the translocation of proteins to moving emulsions in microfluidic devices. Here we combine experiments and theory to investigate the collective transport properties of colloidal particles along a rotating ring of optical traps. In the co-rotating reference frame, the particles are driven by a vortex flow of the surrounding fluid. When increasing the depth of the optical potential, we observe a jamming behavior that manifests itself in a strong reduction of the current with increasing particle density. We show that this jamming is caused by hydrodynamic interactions that enhance the energetic barriers between the optical traps. This leads to a transition from an over- to an under-critical tilting of the potential in the corotating frame. Based on analytical considerations, the enhancement effect is estimated to increase with increasing particle size or decreasing radius of the ring of traps. Measurements for different ring radii and Stokesian dynamics simulations for corresponding particle sizes confirm this. The enhancement of potential barriers in the flow-driven system is contrasted to the reduction of barriers in a force-driven one. This diverse behavior demonstrates that hydrodynamic interactions can have a very different impact on the collective dynamics of many-body systems. Applications to soft matter and biological systems require careful consideration of the driving mechanism and of the role of hydrodynamic interactions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源