论文标题
多参数最大傅里叶限制
Multi-parameter maximal Fourier restriction
论文作者
论文摘要
本说明的主要结果是增强了相当任意的先验傅里叶限制估计,以对同一类型的多参数最大估计值进行增强。这使我们能够讨论傅立叶变换的某些多参数Lebesgue点属性,该特性用椭圆形取代了欧几里得球。按照相同的证据,我们还建立了一个$ d $ - 参数Menshov--paley-Zygmund-type定理,用于$ \ Mathbb {r}^d $上的傅立叶变换。对于$ d \ geq2 $,这种结果很有趣,因为与一维情况形成鲜明对比,相应的终点$ l^2 $估计(即,carleson型定理)自1970年的C. fefferman的工作以来就会失败。最终,我们表现出一定能力的一定能力,我们表明了一定能力的一定能力,可以分配一定能力,可以分配一定能力,可以分配一定能力,可以分配一定能力,可以分配一定能力,可以分配一定能力。伪分化版本。
The main result of this note is the strengthening of a quite arbitrary a priori Fourier restriction estimate to a multi-parameter maximal estimate of the same type. This allows us to discuss a certain multi-parameter Lebesgue point property of Fourier transforms, which replaces Euclidean balls by ellipsoids. Along the lines of the same proof, we also establish a $d$-parameter Menshov--Paley--Zygmund-type theorem for the Fourier transform on $\mathbb{R}^d$. Such a result is interesting for $d\geq2$ because, in a sharp contrast with the one-dimensional case, the corresponding endpoint $L^2$ estimate (i.e., a Carleson-type theorem) is known to fail since the work of C. Fefferman in 1970. Finally, we show that a Strichartz estimate for a given homogeneous constant-coefficient linear dispersive PDE can sometimes be strengthened to a certain pseudo-differential version.