论文标题

保险丝与混合:启用MACAM的模拟激活,用于节能神经加速

Fuse and Mix: MACAM-Enabled Analog Activation for Energy-Efficient Neural Acceleration

论文作者

Zhu, Hanqing, Zhu, Keren, Gu, Jiaqi, Jin, Harrison, Chen, Ray, Incorvia, Jean Anne, Pan, David Z.

论文摘要

模拟计算被认为是用于神经网络加速的数字对应物的有前途的低功率替代品。但是,传统的模拟计算主要以混合信号方式进行。乏味的模拟/数字(A/D)转换成本显着限制了整个系统的能源效率。在这项工作中,我们使用磁性隧道连接(MTJ)基于模拟内容 - 可调地理的内存(MACAM)设计了一个有效的模拟激活单元,同时以融合方式实现了非线性激活和A/D转换。为了补偿MACAM的新生且目前有限的表示能力,我们建议将模拟激活单元与数字激活数据流相结合。完全差异的框架SuperMixer被开发用于搜索优化的激活工作负载分配,并适应各种激活能量约束。我们提出的方法的有效性在硅光子加速器上评估。与标准激活实施相比,我们与搜索分配的混合激活系统可以通过在A/D转换和激活上节省$ 60%的能源来实现竞争精度。

Analog computing has been recognized as a promising low-power alternative to digital counterparts for neural network acceleration. However, conventional analog computing is mainly in a mixed-signal manner. Tedious analog/digital (A/D) conversion cost significantly limits the overall system's energy efficiency. In this work, we devise an efficient analog activation unit with magnetic tunnel junction (MTJ)-based analog content-addressable memory (MACAM), simultaneously realizing nonlinear activation and A/D conversion in a fused fashion. To compensate for the nascent and therefore currently limited representation capability of MACAM, we propose to mix our analog activation unit with digital activation dataflow. A fully differential framework, SuperMixer, is developed to search for an optimized activation workload assignment, adaptive to various activation energy constraints. The effectiveness of our proposed methods is evaluated on a silicon photonic accelerator. Compared to standard activation implementation, our mixed activation system with the searched assignment can achieve competitive accuracy with $>$60% energy saving on A/D conversion and activation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源