论文标题
潜在回归IRT模型中的可变选择:对国际大规模评估的申请
Variable Selection in Latent Regression IRT Models via Knockoffs: An Application to International Large-scale Assessment in Education
论文作者
论文摘要
国际大规模评估(ILSA)在教育研究和政策制定中起着重要作用。他们收集有关许多教育系统教育质量和绩效发展的宝贵数据,使各国有机会共享已证明有效和成功的技术,组织结构和政策。为了从ILSA数据中获得见解,我们确定与学生的学习成绩相关的非认知变量。这个问题有三个分析挑战:1)在矩阵采样设计下,通过认知项目来衡量学习成绩; 2)非认知变量中有许多缺失值; 3)由于大量的非认知变量,多次比较。我们考虑对该计划的国际学生评估(PISA)申请,旨在确定与学生在科学领域的表现相关的非认知变量。我们将其作为一般潜在变量模型框架下的变量选择问题提出,并进一步提出了一种仿冒方法,该方法通过用于错误选择的受控错误率进行变量选择。
International large-scale assessments (ILSAs) play an important role in educational research and policy making. They collect valuable data on education quality and performance development across many education systems, giving countries the opportunity to share techniques, organizational structures, and policies that have proven efficient and successful. To gain insights from ILSA data, we identify non-cognitive variables associated with students' academic performance. This problem has three analytical challenges: 1) academic performance is measured by cognitive items under a matrix sampling design; 2) there are many missing values in the non-cognitive variables; and 3) multiple comparisons due to a large number of non-cognitive variables. We consider an application to the Programme for International Student Assessment (PISA), aiming to identify non-cognitive variables associated with students' performance in science. We formulate it as a variable selection problem under a general latent variable model framework and further propose a knockoff method that conducts variable selection with a controlled error rate for false selections.