论文标题

$ -D_0^2+2x_1d_0d_2+d_1^2+x_1^3D_2^2+\ sum_ {j = 0}^2b_jd_j $

A note on the Cauchy problem for $-D_0^2+2x_1D_0D_2+D_1^2+x_1^3D_2^2+\sum_{j=0}^2b_jD_j$

论文作者

Nishitani, Tatsuo

论文摘要

在本说明中,我们改善了标题中提到的同质二阶差分运算符的Gevrey类中Cauchy问题的凯奇问题的先前证明的不可辨方性结果。我们证明,该运算符的凯奇问题在原点不可用,对于大于5的Gevrey类中的任何低阶项,降低了先前获得的Gevrey订单6。

In this note, we improve a previously proven non-solvability result of the Cauchy problem for the Cauchy problem in the Gevrey class for a homogeneous second-order differential operator mentioned in the title. We prove that the Cauchy problem for this operator is not locally solvable at the origin for any lower order term in the Gevrey class of order greater than 5, lowering the previously obtained Gevrey order 6.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源