论文标题

多个导弹的合作指导:一种混合共同进化方法

Cooperative guidance of multiple missiles: a hybrid co-evolutionary approach

论文作者

Lan, Xuejing, Chen, Junda, Zhao, Zhijia, Zou, Tao

论文摘要

多个导弹的合作指导是一项具有挑战性的任务,并具有严格的时间和空间共识约束,尤其是在攻击动态目标时。在本文中,合作指导任务被描述为分布式多目标合作优化问题。为了解决合作指导所面临的非平稳性和持续控制问题,自然进化策略(NES)以及一种精英自适应学习技术得到了改善,以制定一种新型的自然共同进化策略(NCES)。重新制定了原始进化策略的梯度,以减少由多个导弹之间相互作用引起的估计偏差。然后,通过整合高度可扩展的共同进化机制和传统的指导策略,提出了混合共同进化的指导法(HCCGL)。最后,在不同条件下的三个模拟证明了本指导法在以高准确性解决合作指导任务方面的有效性和优势。所提出的共同进化方法不仅在合作指导中,而且在其他多目标优化,动态优化和分布式控制方面都具有巨大的前景。

Cooperative guidance of multiple missiles is a challenging task with rigorous constraints of time and space consensus, especially when attacking dynamic targets. In this paper, the cooperative guidance task is described as a distributed multi-objective cooperative optimization problem. To address the issues of non-stationarity and continuous control faced by cooperative guidance, the natural evolutionary strategy (NES) is improved along with an elitist adaptive learning technique to develop a novel natural co-evolutionary strategy (NCES). The gradients of original evolutionary strategy are rescaled to reduce the estimation bias caused by the interaction between the multiple missiles. Then, a hybrid co-evolutionary cooperative guidance law (HCCGL) is proposed by integrating the highly scalable co-evolutionary mechanism and the traditional guidance strategy. Finally, three simulations under different conditions demonstrate the effectiveness and superiority of this guidance law in solving cooperative guidance tasks with high accuracy. The proposed co-evolutionary approach has great prospects not only in cooperative guidance, but also in other application scenarios of multi-objective optimization, dynamic optimization and distributed control.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源