论文标题
观察大量自发排放速率在破碎的对称慢轻型波导中的量子点增强
Observation of large spontaneous emission rate enhancement of quantum dots in a broken-symmetry slow-light waveguide
论文作者
论文摘要
可以在纳米级上操纵光和物质的量子状态,以提供一种技术资源,以帮助实施可扩展的光子量子技术[1-3]。实验进度取决于光子和量子发射器内部状态之间耦合的质量和效率[4-6]。在这里,我们演示了一个带有嵌入式量子点(QD)的纳米光子波导平台,该平台既可以实现Purcell-Enhanced发射和强性手性耦合。该设计在滑动平面光子晶体波导中使用慢速效应,并调整QD调整,以使发射频率与慢灯区域相匹配。根据偶极发射管相对于气孔的位置,使用模拟来绘制手性和purcell的增强。最高的purcell因子和手性发生在单独的区域中,但仍然存在很大的区域,可以获得两者的高值。基于此,我们首先证明了与20倍purcell增强功能相对应的17 ns^-1(60 ps寿命)的大辐射衰减速率。这是通过将QD的电场调谐到慢灯区域和准谐振的声子侧带激发来实现的。然后,我们证明了具有高度手性耦合到波导模式的DOT的5倍purcell增强功能,实质上超过了所有先前的测量值。这些共同证明了在依靠手性量子光学元件的片上旋转光谱的可扩展实现中使用QD的出色前景。
Quantum states of light and matter can be manipulated on the nanoscale to provide a technological resource for aiding the implementation of scalable photonic quantum technologies [1-3]. Experimental progress relies on the quality and efficiency of the coupling between photons and internal states of quantum emitters [4-6]. Here we demonstrate a nanophotonic waveguide platform with embedded quantum dots (QDs) that enables both Purcell-enhanced emission and strong chiral coupling. The design uses slow-light effects in a glide-plane photonic crystal waveguide with QD tuning to match the emission frequency to the slow-light region. Simulations were used to map the chirality and Purcell enhancement depending on the position of a dipole emitter relative to the air holes. The highest Purcell factors and chirality occur in separate regions, but there is still a significant area where high values of both can be obtained. Based on this, we first demonstrate a record large radiative decay rate of 17 ns^-1 (60 ps lifetime) corresponding to a 20 fold Purcell enhancement. This was achieved by electric-field tuning of the QD to the slow-light region and quasi-resonant phonon-sideband excitation. We then demonstrate a 5 fold Purcell enhancement for a dot with high degree of chiral coupling to waveguide modes, substantially surpassing all previous measurements. Together these demonstrate the excellent prospects for using QDs in scalable implementations of on-chip spin-photonics relying on chiral quantum optics.