论文标题

公共交通系统中的过量需求:匹兹堡港口管理局的案例

Excess demand in public transportation systems: The case of Pittsburgh's Port Authority

论文作者

Ma, Tianfang, Khubulashvili, Robizon, Linardi, Sera, Pelechrinis, Konstantinos

论文摘要

“一个先进的城市不是汽车中穷人搬迁的地方,而是富人使用公共交通工具的地方”。这就是波哥大著名的前校长恩里克·迪诺罗萨(Enrique Pornosa)曾经说过的。但是,为了实现这一目标,公共交通系统需要满足的关键特性之一是可靠性。虽然通常在安排上的到达和出发方面引用可靠性,但在这项研究中,我们对系统满足总乘客需求的能力感兴趣。这是至关重要的,因为如果系统的能力不足以满足所有乘客,那么乘客将不可避免地下降。但是,由于公共交通数据,尤其是我们在本研究中关注的公共汽车系统的数据,因此量化这一过剩需求并不是一件直接的,只包括用于公交车的人的信息,而不是由于完整的公共汽车而被遗留在停车的人。在这项工作中,我们设计了一个框架来估计这种过剩的需求。我们的框架包括一种机制,可以识别潜在的过剩需求实例,以及针对特定公交路线和停止需求的泊松回归模型。从泊松回归的训练阶段滤除了这些潜在的过剩需求的实例。我们通过模拟数据显示,此过滤能够删除系统记录的审查数据引入的偏差。无法删除这些数据点会导致低估过剩需求。然后,我们将我们的方法应用于从匹兹堡港口管理局收集的真实数据上,并在一年内估算过剩需求。

"An advanced city is not a place where the poor move about in cars, rather it's where even the rich use public transportation". This is what Enrique Penalosa, the celebrated ex-mayor of Bogota once said. However, in order to achieve this objective, one of the crucial properties that the public transportation systems need to satisfy is reliability. While reliability is often referenced with respect to on-schedule arrivals and departures, in this study we are interested in the ability of the system to satisfy the total passenger demand. This is crucial, since if the capacity of the system is not enough to satisfy all the passengers, then ridership will inevitably drop. However, quantifying this excess demand is not straightforward since public transit data, and in particular data from bus systems that we focus on in this study, only include information for people that got on the bus, and not those that were left behind at a stop due to a full bus. In this work, we design a framework for estimating this excess demand. Our framework includes a mechanism for identifying instances of potential excess demand, and a Poisson regression model for the demand for a given bus route and stop. These instances of potential excess demand are filtered out from the training phase of the Poisson regression. We show through simulated data that this filtering is able to remove the bias introduced by the censored data logged by the system. Failure to remove these data points leads to an underestimation of the excess demand. We then apply our approach on real data collected from the Pittsburgh Port Authority and estimate the excess demand over an one-year period.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源