论文标题

粒子在$ q $呈现的欧几里得空间上的散射

Scattering of a particle on the $q$-deformed Euclidean space

论文作者

Wachter, Hartmut

论文摘要

我们开发了一种形式主义,用于在$ q $ $ q $形式的欧几里得空间上散射粒子。我们写下了lippmann-Schwinger方程式的$ q $ versions。他们针对微弱散射的迭代解决方案使我们成为了天生系列的$ q $ versions。借助散射粒子的波函数的表达式,我们可以写下s-matrix元素。我们表明,这些S-Matrix元素满足单位性条件。关于$ q $ euclidean空间中量子系统的相互作用图片的考虑,并讨论了$ q $ co $依赖时间的扰动理论的讨论,总结了我们的研究。

We develop a formalism for the scattering of a particle on the $q$-deformed Euclidean space. We write down $q$-versions of the Lippmann-Schwinger equation. Their iterative solutions for a weak scattering potential lead us to $q$-versions of the Born series. With the expressions for the wave functions of the scattered particle, we can write down S-matrix elements. We show that these S-matrix elements satisfy unitarity conditions. Considerations about the interaction picture for a quantum system in the $q$-deformed Euclidean space and a discussion of a $q$-version of time-dependent perturbation theory conclude our studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源