论文标题

时间序列张量因子模型中的等级和因子负载估计通过预先计算

Rank and Factor Loadings Estimation in Time Series Tensor Factor Model by Pre-averaging

论文作者

Chen, Weilin, Lam, Clifford

论文摘要

张量时间序列数据自然出现在许多领域,包括金融和经济学。作为一个主要的降低工具,类似于其因子模型对应物,张量的时间序列因子模型的特质组件可以显示出串行相关性,尤其是在金融和经济应用中。这排除了许多采用白色特质组件甚至独立/高斯数据的最先进的方法。虽然传统的高阶正交迭代(HOOI)被证明是收敛到一组因子加载矩阵,但它们与真正的潜在因子加载矩阵的亲密性一般未建立,或者仅在某些严格的情况下(例如I.I.D.高斯噪音(Zhang and Xia,2018年)。在特质组件和时间序列变量中存在串行和互相关的情况下,我们提出了一种预测方法,该方法从张量纤维中积累信息,以更好地估计所有因子加载空间。然后,使用与最强因素相对应的估计方向来投影数据,以改善因子加载空间本身的重新估计,理论保证和收敛速度明确了。我们还提出了一种新的等级估计方法,该方法利用了与Fan,Guo和Zheng(2022)相同的精神,用于具有独立数据的因子模型,以相同的精神,具有相同的精神。广泛的仿真结果揭示了相对于其他最先进或传统替代方案的等级和因子加载估计量的竞争性能。还分析了一组矩阵估计的投资组合返回数据。

Tensor time series data appears naturally in a lot of fields, including finance and economics. As a major dimension reduction tool, similar to its factor model counterpart, the idiosyncratic components of a tensor time series factor model can exhibit serial correlations, especially in financial and economic applications. This rules out a lot of state-of-the-art methods that assume white idiosyncratic components, or even independent/Gaussian data. While the traditional higher order orthogonal iteration (HOOI) is proved to be convergent to a set of factor loading matrices, the closeness of them to the true underlying factor loading matrices are in general not established, or only under some strict circumstances like having i.i.d. Gaussian noises (Zhang and Xia, 2018). Under the presence of serial and cross-correlations in the idiosyncratic components and time series variables with only bounded fourth order moments, we propose a pre-averaging method that accumulates information from tensor fibres for better estimating all the factor loading spaces. The estimated directions corresponding to the strongest factors are then used for projecting the data for a potentially improved re-estimation of the factor loading spaces themselves, with theoretical guarantees and rate of convergence spelt out. We also propose a new rank estimation method which utilizes correlation information from the projected data, in the same spirit as Fan, Guo and Zheng (2022) for factor models with independent data. Extensive simulation results reveal competitive performance of our rank and factor loading estimators relative to other state-of-the-art or traditional alternatives. A set of matrix-valued portfolio return data is also analyzed.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源