论文标题
通过石墨烯纳米骨的拓扑带态的长度无关量子传输
Length-independent quantum transport through topological band states of graphene nanoribbons
论文作者
论文摘要
原子上精确的石墨烯纳米纤维(GNR)已成为纳米电子应用的有前途的候选者,这是由于其侧向量子限制和边缘效应引起的广泛可调能量带隙。在这里,我们报告了悬浮在扫描隧道显微镜(STM)和AU(111)底物之间的边缘修饰GNR的电子传输表征。该金属 - GNR金属连接处的差分电导测量值揭示了无损耗的传输特性($β<0.001 /\ overset {\ circ} {\ mathrm {a}} $,具有高电导率($ \ sim 0.1 $ g $ _0 $)的电力(50 mev)(50 mev)($ z)超过了($ z)$ z $ nm $ nm,$ nm高电导率($ \ sim 0.1 $ g $ _0 $)。传输行为对色带和电极之间的耦合敏感,这种效应使用紧密结合和密度函数理论模拟合理化。从广泛的建模中,我们推断出长度无关的运输是通过拓扑价态传输的频带传输的表现,该传输源自GNR边缘上的锯齿形段。
Atomically precise graphene nanoribbons (GNRs) have emerged as promising candidates for nanoelectronic applications due to their widely tunable energy band gaps resulting from lateral quantum confinement and edge effects. Here we report on the electronic transport characterization of an edge-modified GNR suspended between the tip of a scanning tunneling microscope (STM) and a Au(111) substrate. Differential conductance measurements on this metal-GNR-metal junction reveal loss-less transport properties (inverse decay length $β< 0.001 /\overset{\circ}{\mathrm{A}}$) with high conductance ($\sim 0.1$ G$_0$) at low voltages (50 meV) over long distances ($z > 10$ nm). The transport behavior is sensitive to the coupling between ribbon and electrodes, an effect that is rationalized using tight-binding and density functional theory simulations. From extensive modelling we infer that the length-independent transport is a manifestation of band transport through topological valence states, which originate from the zigzag segments on the GNR edges.