论文标题

以视觉为中心的BEV感知:一项调查

Vision-Centric BEV Perception: A Survey

论文作者

Ma, Yuexin, Wang, Tai, Bai, Xuyang, Yang, Huitong, Hou, Yuenan, Wang, Yaming, Qiao, Yu, Yang, Ruigang, Manocha, Dinesh, Zhu, Xinge

论文摘要

近年来,以视觉为中心的鸟类的眼光(BEV)感知因其固有的优势而引起了行业和学术界的重大兴趣,例如提供了世界直观的代表,并有助于数据融合。深度学习的快速进步导致提出了许多解决以视觉为中心的BEV感知挑战的方法。但是,最近没有调查包括这个小说和新兴的研究领域。为了催化未来的研究,本文介绍了以视觉为中心的BEV感知及其扩展方面的最新发展。它汇编和组织最新的知识,提供系统的综述和普遍算法的摘要。此外,本文为各种BEV感知任务提供了深入的分析和比较结果,从而促进了对未来作品的评估并引发新的研究方向。此外,本文讨论并分享了有价值的经验实施细节,以帮助提高相关算法。

In recent years, vision-centric Bird's Eye View (BEV) perception has garnered significant interest from both industry and academia due to its inherent advantages, such as providing an intuitive representation of the world and being conducive to data fusion. The rapid advancements in deep learning have led to the proposal of numerous methods for addressing vision-centric BEV perception challenges. However, there has been no recent survey encompassing this novel and burgeoning research field. To catalyze future research, this paper presents a comprehensive survey of the latest developments in vision-centric BEV perception and its extensions. It compiles and organizes up-to-date knowledge, offering a systematic review and summary of prevalent algorithms. Additionally, the paper provides in-depth analyses and comparative results on various BEV perception tasks, facilitating the evaluation of future works and sparking new research directions. Furthermore, the paper discusses and shares valuable empirical implementation details to aid in the advancement of related algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源