论文标题
交通运营和控制的合作感知环境
A Cooperative Perception Environment for Traffic Operations and Control
论文作者
论文摘要
用于流量操作和控制的现有数据收集方法通常取决于基于基础设施的环路探测器或探测器车辆轨迹。连接和自动化的车辆(CAVS)不仅可以报告有关自己的数据,而且可以提供所有检测到的周围车辆的状态。从多个CAVS以及基础设施传感器(例如Lidar)中的感知数据的整合也可以提供更丰富的信息,即使在非常低的渗透率下也可以提供。本文旨在开发合作数据收集系统,该系统集成了来自基础架构和CAVS的LiDar Point Cloud数据,以为各种运输应用创建合作感知环境。最新的3D检测模型用于在合并点云中检测车辆。我们在与Carla和Sumo的共模拟平台中,使用最大压力自适应信号控制模型测试了提出的合作感知环境。结果表明,CAV和基础设施传感器的渗透率非常低,足以实现可比性的性能,而连接车辆(CV)的渗透率为30%或更高。我们还显示了不同CAV渗透率下的等效CV渗透率(E-CVPR),以证明合作感知环境的数据收集效率。
Existing data collection methods for traffic operations and control usually rely on infrastructure-based loop detectors or probe vehicle trajectories. Connected and automated vehicles (CAVs) not only can report data about themselves but also can provide the status of all detected surrounding vehicles. Integration of perception data from multiple CAVs as well as infrastructure sensors (e.g., LiDAR) can provide richer information even under a very low penetration rate. This paper aims to develop a cooperative data collection system, which integrates Lidar point cloud data from both infrastructure and CAVs to create a cooperative perception environment for various transportation applications. The state-of-the-art 3D detection models are applied to detect vehicles in the merged point cloud. We test the proposed cooperative perception environment with the max pressure adaptive signal control model in a co-simulation platform with CARLA and SUMO. Results show that very low penetration rates of CAV plus an infrastructure sensor are sufficient to achieve comparable performance with 30% or higher penetration rates of connected vehicles (CV). We also show the equivalent CV penetration rate (E-CVPR) under different CAV penetration rates to demonstrate the data collection efficiency of the cooperative perception environment.