论文标题

巨大粒子表面的几何形状

The geometry of massive particle surfaces

论文作者

Kobialko, Kirill, Bogush, Igor, Gal'tsov, Dmitri

论文摘要

我们提出将Claudel,Virbhadra和Ellis Photon表面的概括为大量充电的颗粒的情况,考虑到及时的超表面,以至于任何具有质量$ M $的粒子,电荷$ Q $和固定的总能量$ $ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ Mathcal {e} $的情况,最初将永远触及hypersurface。该定义不直接吸引运动方程,而是利用表面几何形状的部分脐带性质。在不可集成的运动方程式中,这种方法应该特别有用。它可以应用于非薄积盘理论中,也可以为某些常规问题提供新工具,例如独特定理,penrose不平等和隐藏的对称性。衍生出世界线的稳定性的条件是沿特定能量表面流的分化。我们考虑了许多示例电动汽车和DILATON溶液,找到了边缘稳定轨道的条件,稳定或不稳定的球形轨道的区域,稳定且不稳定的光子表面以及满足无力条件的溶液。

We propose a generalization of Claudel, Virbhadra, and Ellis photon surfaces to the case of massive charged particles, considering a timelike hypersurface such that any worldline of a particle with mass $m$, electric charge $q$ and fixed total energy $\mathcal{E}$, initially touching it, will remain in this hypersurface forever. This definition does not directly appeal to the equations of motion, but instead make use of partially umbilic nature of the surface geometry. Such an approach should be especially useful in the case of non-integrable equations of motion. It may be applied in the theory of non-thin accretion discs, and also may serve a new tool for some general problems, such as uniqueness theorems, Penrose inequalities and hidden symmetries. The condition for the stability of the worldlines is derived, which reduces to differentiation along the flow of surfaces of a certain energy. We consider a number of examples of electrovacuum and dilaton solutions, find conditions for marginally stable orbits, regions of stable or unstable spherical orbits, stable and unstable photon surfaces, and solutions satisfying the no-force condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源