论文标题
从涉及三角功能的关系中,$π$的任何正力的新系列表示
New series representations for any positive power of $π$ from a relation involving trigonometric functions
论文作者
论文摘要
在以前的作品中,我们以$π^3 $和$π^5 $介绍了串联表示形式,其中预制器仅依赖于黄金比率。在本文中,我们得出了涉及三角函数和无限序列的一般关系。这样的身份可能会为$π$的任何正功率提供许多串联表示形式,其中以$π^3 $和$π^5 $的上述表示形式。
In previous works, we presented series representations for $π^3$ and $π^5$, in which the prefactor depends only on the golden ratio appears. In this article, we derive a general relation involving trigonometric functions and an infinite series. Such an identity is likely to provide many series representations for any positive power of $π$, among them the above mentioned representations for $π^3$ and $π^5$.