论文标题

Cheeger不平等和串联扩张:超出恒定系数

The Cheeger Inequality and Coboundary Expansion: Beyond Constant Coefficients

论文作者

First, Uriya A., Kaufman, Tali

论文摘要

图形的脸颊常数,或等效地串联扩展,量化了图的扩展。这个概念假定了系数组的隐式选择,即$ \ mathbb {f} _2 $。在本文中,我们研究了带有广义系数组的图表的cheeger型不平等,称为捆捆;这是由于应用程序扩展和本地测试代码的应用。我们证明,当且仅当它具有相对于任何(某些)恒定的脱节或等效相对于任何“普通”系数组的(某些)恒定的(某些)恒定的群体扩展时,图形是一个良好的光谱扩展器。此外,我们表明,从定义明确的意义上讲,接近恒定的滑轮也是良好的耦合扩张器,前提是它们的基础图是一个扩展器,因此为稀疏图上的非固有带带状带中的良好串联膨胀的示例提供了一个良好的串联扩张的例子。相比之下,我们观察到,对于图形上的一般或骨,不可能将图形的膨胀和捆的串联扩展联系起来。 我们将结果专注于(有限)球形建筑的束带。具体来说,我们表明(加权)图的归一化第二特征值是$ q $ -thick $ d $ d $ - 二维球形建筑物为$ o(\ frac {1} {\ sqrt {q} {q} -3d} -3d} -3d} -3d} -3d})$ IF $ q> 9d^2 $。将其插入我们的串联扩展的结果中,在球形建筑物上某些常数和非恒定带绳的串联扩展上有明确的下限;对于固定尺寸$ d $,随着厚度$ q $的增长,边界接近常数。 在此过程中,我们证明了一种新版本的扩展器混合引理,以$ r $ partite的加权图。

The Cheeger constant of a graph, or equivalently its coboundary expansion, quantifies the expansion of the graph. This notion assumes an implicit choice of a coefficient group, namely, $\mathbb{F}_2$. In this paper, we study Cheeger-type inequalities for graphs endowed with a generalized coefficient group, called a sheaf; this is motivated by applications to cosystolic expansion and locally testable codes. We prove that a graph is a good spectral expander if and only if it has good coboundary expansion relative to any (resp. some) constant sheaf, or equivalently, relative to any `ordinary' coefficient group. We moreover show that sheaves that are close to being constant in a well-defined sense are also good coboundary expanders, provided that their underlying graph is an expander, thus giving the first example of good coboundary expansion in non-cosntant sheaves on sparse graphs. By contrast, we observe that for general sheaves on graphs, it is impossible to relate the expansion of the graph and the coboundary expansion of the sheaf. We specialize our results to sheaves on (finite) spherical buildings. Specifically, we show that the normalized second eigenvalue of the (weighted) graph underlying a $q$-thick $d$-dimensional spherical building is $O(\frac{1}{\sqrt{q}-3d})$ if $q>9d^2$. Plugging this into our results about coboundary expansion gives explicit lower bounds on the coboundary expansion of some constant and non-constant sheaves on spherical buildings; for a fixed dimension $d$, the bounds approach a constant as the thickness $q$ grows. Along the way, we prove a new version of the Expander Mixing Lemma for $r$-partite weighted graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源