论文标题

三个时尺度系统中折叠极限周期歧管的几何爆炸

Geometric Blow-Up for Folded Limit Cycle Manifolds in Three Time-Scale Systems

论文作者

Jelbart, Samuel, Kuehn, Christian, Kuntz, Sara-Viola

论文摘要

几何奇异扰动理论为分析“固定”多个时尺度系统的分析提供了一个强大的数学框架,该系统具有关键的流形,即稳态的平滑歧管,用于限制快速子系统,尤其是与一种被称为爆破的降压方法相结合时。具有限制周期歧管的“振荡”多个时间尺度系统的理论,而不是(或除了)临界流形的理论较少发达,尤其是在非正常双曲线方向上。我们使用爆破方法在三个带有两个小参数的三个时间尺度的“半振荡性”系统中分析常规折叠极限周期歧管附近的全局振荡过渡。该系统被认为的行为像振荡系统一样,因为最小的扰动参数趋于零,而固定系统则是两个扰动参数往往为零。额外的时间尺度结构对于爆破方法的适用性至关重要,该方法无法直接应用于问题的两个时间尺度振荡。我们的方法使我们能够描述所有解决全球奇异性邻里的解决方案的渐近和强大合同性。我们的主要结果涵盖了有关角动力学和参数漂移的相对时间尺度的一系列不同情况。我们证明了我们的结果适用于在慢速方程中定期强迫的系统,尤其是在一类liénard方程中。最后,我们考虑了一种玩具模型,用于在快速方程式中使用周期性强迫研究气候系统中的小费现象,这违反了我们的主要结果条件,以证明对这种问题的经典(两个时间尺度)理论的适用性。

Geometric singular perturbation theory provides a powerful mathematical framework for the analysis of 'stationary' multiple time-scale systems which possess a critical manifold, i.e. a smooth manifold of steady states for the limiting fast subsystem, particularly when combined with a method of desingularization known as blow-up. The theory for 'oscillatory' multiple time-scale systems which possess a limit cycle manifold instead of (or in addition to) a critical manifold is less developed, particularly in the non-normally hyperbolic regime. We use the blow-up method to analyse the global oscillatory transition near a regular folded limit cycle manifold in a class of three time-scale 'semi-oscillatory' systems with two small parameters. The systems considered behave like oscillatory systems as the smallest perturbation parameter tends to zero, and stationary systems as both perturbation parameters tend to zero. The additional time-scale structure is crucial for the applicability of the blow-up method, which cannot be applied directly to the two time-scale oscillatory counterpart of the problem. Our methods allow us to describe the asymptotics and strong contractivity of all solutions which traverse a neighbourhood of the global singularity. Our main results cover a range of different cases with respect to the relative time-scale of the angular dynamics and the parameter drift. We demonstrate the applicability of our results for systems with periodic forcing in the slow equation, in particular for a class of Liénard equations. Finally, we consider a toy model used to study tipping phenomena in climate systems with periodic forcing in the fast equation, which violates the conditions of our main results, in order to demonstrate the applicability of classical (two time-scale) theory for problems of this kind.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源