论文标题
部分可观测时空混沌系统的无模型预测
Short-term Load Forecasting with Distributed Long Short-Term Memory
论文作者
论文摘要
通过使用智能电表,零售商可以收集有关消费者行为的大量数据。从收集的数据中,零售商可以获取家庭概况信息并实施需求响应。尽管零售商更喜欢在不同客户中获得尽可能准确的模型,但面临两个主要挑战。首先,零售市场中的不同零售商不会共享其消费者的电力消耗数据,因为这些数据被视为其资产,这导致了数据岛的问题。其次,由于不同的零售商可以为各种消费者服务,因此电力负载数据是高度异质的。为此,提出了基于共识算法和长期记忆(LSTM)的完全分布的短期负载预测框架,这可能保护客户的隐私并满足准确的负载预测要求。具体而言,利用完全分布式的学习框架进行分布式培训,并采用共识技术来符合机密隐私。案例研究表明,所提出的方法具有可比性的性能,并且有关准确性的集中方法,但是所提出的方法显示了训练速度和数据隐私方面的优势。
With the employment of smart meters, massive data on consumer behaviour can be collected by retailers. From the collected data, the retailers may obtain the household profile information and implement demand response. While retailers prefer to acquire a model as accurate as possible among different customers, there are two major challenges. First, different retailers in the retail market do not share their consumer's electricity consumption data as these data are regarded as their assets, which has led to the problem of data island. Second, the electricity load data are highly heterogeneous since different retailers may serve various consumers. To this end, a fully distributed short-term load forecasting framework based on a consensus algorithm and Long Short-Term Memory (LSTM) is proposed, which may protect the customer's privacy and satisfy the accurate load forecasting requirement. Specifically, a fully distributed learning framework is exploited for distributed training, and a consensus technique is applied to meet confidential privacy. Case studies show that the proposed method has comparable performance with centralised methods regarding the accuracy, but the proposed method shows advantages in training speed and data privacy.