论文标题

部分可观测时空混沌系统的无模型预测

Semi-convergence of the APSS method for a class of nonsymmetric three-by-three singular saddle point problems

论文作者

Aslani, Hamed, Salkuyeh, Davod Khojasteh

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

For nonsymmetric block three-by-three singular saddle point problems arising from the Picard iteration method for a class of mixed finite element scheme, recently Salkuyeh et al. in (D.K. Salkuyeh, H. Aslani, Z.Z. Liang, An alternating positive semi-definite splitting preconditioner for the three-by-three block saddle point problems, Math. Commun. 26 (2021) 177-195) established an alternating positive semi-definite splitting (APSS) method. In this work, we analyse the semi-convergence of the APSS method for solving a class of nonsymmetric block three-by-three singular saddle point problems. The APSS induced preconditioner is applied to improve the semi-convergence rate of the flexible GMRES (FGMRES) method. Experimental results are designated to support the theoretical results. These results show that the served preconditioner is efficient compared with FGMRES without a preconditioner.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源