论文标题

CSDN:用于点云完成的跨模式形状转移双转换网络

CSDN: Cross-modal Shape-transfer Dual-refinement Network for Point Cloud Completion

论文作者

Zhu, Zhe, Nan, Liangliang, Xie, Haoran, Chen, Honghua, Wei, Mingqiang, Wang, Jun, Qin, Jing

论文摘要

您将如何用一些错过修复物理对象?您可能会想象它的原始形状从先前捕获的图像中,首先恢复其整体(全球)但粗大的形状,然后完善其本地细节。我们有动力模仿物理维修程序以解决点云完成。为此,我们提出了一个跨模式 - 形状转移双重填充网络(称为CSDN),这是一种带有全周期参与图像的粗到精细的范式,以完成优质的点云完成。 CSDN主要由“ Shape Fusion”和“ Dual-Dual-Refinect”模块组成,以应对跨模式挑战。第一个模块将固有的形状特性从单个图像传输,以引导点云缺失区域的几何形状生成,在其中,我们建议iPadain嵌入图像的全局特征和部分点云的完成。第二个模块通过调整生成点的位置来完善粗糙输出,其中局部改进单元通过图卷积利用了小说和输入点之间的几何关系,而全局约束单元则利用输入图像微调生成的偏移量。与大多数现有方法不同,CSDN不仅探讨了图像中的互补信息,而且还可以在整个粗到精细的完成过程中有效利用跨模式数据。实验结果表明,CSDN对十个跨模式基准的竞争对手表现出色。

How will you repair a physical object with some missings? You may imagine its original shape from previously captured images, recover its overall (global) but coarse shape first, and then refine its local details. We are motivated to imitate the physical repair procedure to address point cloud completion. To this end, we propose a cross-modal shape-transfer dual-refinement network (termed CSDN), a coarse-to-fine paradigm with images of full-cycle participation, for quality point cloud completion. CSDN mainly consists of "shape fusion" and "dual-refinement" modules to tackle the cross-modal challenge. The first module transfers the intrinsic shape characteristics from single images to guide the geometry generation of the missing regions of point clouds, in which we propose IPAdaIN to embed the global features of both the image and the partial point cloud into completion. The second module refines the coarse output by adjusting the positions of the generated points, where the local refinement unit exploits the geometric relation between the novel and the input points by graph convolution, and the global constraint unit utilizes the input image to fine-tune the generated offset. Different from most existing approaches, CSDN not only explores the complementary information from images but also effectively exploits cross-modal data in the whole coarse-to-fine completion procedure. Experimental results indicate that CSDN performs favorably against ten competitors on the cross-modal benchmark.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源