论文标题

通过新型边界限制网络提取颈动脉超声中的血管壁

Extraction of Vascular Wall in Carotid Ultrasound via a Novel Boundary-Delineation Network

论文作者

Huang, Qinghua, Jia, Lizhi, Ren, Guanqing, Wang, Xiaoyi, Liu, Chunying

论文摘要

超声成像在诊断血管病变中起着重要作用。血管壁的准确分割对于预防,诊断和治疗血管疾病很重要。但是,现有方法的血管壁边界的定位不准确。分割误差发生在不连续的血管壁边界和黑暗边界中。为了克服这些问题,我们提出了一个新的边界限制网络(BDNET)。我们使用边界细化模块重新限制了血管壁的边界以获得正确的边界位置。我们设计了特征提取模块来提取和融合多尺度特征和不同的接受场特征,以解决黑暗边界和不连续边界的问题。我们使用新的损失函数来优化模型。类别不平衡在模型优化上的干扰可阻止获得更细致,更光滑的边界。最后,为了促进临床应用,我们将该模型设计为轻量级。实验结果表明,与数据集的现有模型相比,我们的模型可实现最佳的分割结果,并显着降低内存消耗。

Ultrasound imaging plays an important role in the diagnosis of vascular lesions. Accurate segmentation of the vascular wall is important for the prevention, diagnosis and treatment of vascular diseases. However, existing methods have inaccurate localization of the vascular wall boundary. Segmentation errors occur in discontinuous vascular wall boundaries and dark boundaries. To overcome these problems, we propose a new boundary-delineation network (BDNet). We use the boundary refinement module to re-delineate the boundary of the vascular wall to obtain the correct boundary location. We designed the feature extraction module to extract and fuse multi-scale features and different receptive field features to solve the problem of dark boundaries and discontinuous boundaries. We use a new loss function to optimize the model. The interference of class imbalance on model optimization is prevented to obtain finer and smoother boundaries. Finally, to facilitate clinical applications, we design the model to be lightweight. Experimental results show that our model achieves the best segmentation results and significantly reduces memory consumption compared to existing models for the dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源