论文标题
磁性Weyl半法中的浆果 - 曲面诱导的线性磁磁管
Berry-curvature-induced linear magnetotransport in magnetic Weyl semimetals
论文作者
论文摘要
诸如巨型磁场和霍尔效应之类的磁转运位于基本物理和技术的核心。最近,一些实验清楚地证明了线性磁磁管(LMT)与磁场成正比,但潜在的物理机制仍不清楚。在这项工作中,我们表明浆果曲率效应是主导LMT的一种新机制。在122个磁点组中,有66个蛋白蛋白诱导的LMT广泛存在。对于典型的磁性Weyl半含量$ _3 $ sn $ _2 $ s $ _2 $和铁磁性mnbi $ _2 $ _2 $ _2 $ te $ _4 $,贝里曲率诱导LMT电导率达到$ 10^4 $和$ 10^4 $和$ 10^2 $ $ $ $ {可以通过中等磁场引起的磁化磁化来调节。我们进一步揭示,可以通过霍尔效应(尤其是内在的磁性含量超过$ 100 \%$ $ $ $ $ $)对样品质量不敏感的$ 100 \%$。我们的结果与最近的实验一致,并揭示了浆果曲率在LMT中的重要作用。
Magnetotransport such as the giant magnetoresistance and Hall effect lies at the heart of fundamental physics and technologies. Recently, some experiments have clearly demonstrated linear magnetotransport (LMT) proportional to magnetic field but the underlying physical mechanism is still unclear. In this work, we show that Berry curvature effect is a new mechanism dominating the LMT. The Berry-curvature-induced LMT widely exists in 66 out of 122 magnetic point groups. For typical magnetic Weyl semimetals Co$_3$Sn$_2$S$_2$ and ferromagnetic MnBi$_2$Te$_4$, Berry curvature induces LMT conductivities reaching orders of $10^4$ and $10^2$ ${\rm Ω^{-1}m^{-1}}$ per tesla, respectively, which are tunable through magnetization canting induced by moderate magnetic fields. We further reveal that Berry-curvature-induced LMT can be detected by Hall effect and especially intrinsic magnetoresistance exceeding $100\%$ per tesla insensitive to the sample quality. Our results agree with recent experiments and uncover the important role of Berry curvature in LMT.