论文标题

Q-Whittaker功能,有限领域和Jordan形式

q-Whittaker functions, finite fields, and Jordan forms

论文作者

Karp, Steven N., Thomas, Hugh

论文摘要

与分区$λ$相关的$ q $ -whittaker函数$W_λ(\ MathBf {X}; Q)$是Schur函数的$ Q $ -Analogue $s_λ(\ Mathbf {x})$,并且定义为Macdonald Polynald $ p _ $ p _ $ t = 0 $ t = 0 $ t = 0 $ t = 0 $我们以与nilpotent内态兼容的部分标志在尺寸$ 1/q $的有限字段上兼容的部分标志,以$ 1/q $兼容的是组合$W_λ(\ Mathbf {x}; q)$的组合。这产生了类似于Hall-Littlewood功能的众所周知公式的表达。我们表明,考虑一对局部旗帜并采取约旦形式,可以在非负组矩阵和成对的一对具有相同形状的Semistandard Tableaux对之间进行概率的生命,证明了$ q $ whittaker函数的Cauchy身份。我们称我们的概率生物为$ q $ burge的通信,并证明在限制为$ q \至0 $的情况下,我们恢复了由于Rosso(2012)而引起的经典Burge通信(也称为RSK)的描述。证明的关键步骤是列举$ \ text {gl} _n $ modulo的任意双重固定两个抛物线子组,我们认为这是独立的。作为一个应用程序,我们使用$ q $ brge的通信来计算某些模块的同构类别的类型$ a $ Quiver(即路径)的前代数(即一条路径),并根据其SOCLE过滤进行了完善。这建立了对称函数的组合学与前体代数的表示理论之间的联系。

The $q$-Whittaker function $W_λ(\mathbf{x};q)$ associated to a partition $λ$ is a $q$-analogue of the Schur function $s_λ(\mathbf{x})$, and is defined as the $t=0$ specialization of the Macdonald polynomial $P_λ(\mathbf{x};q,t)$. We show combinatorially how to expand $W_λ(\mathbf{x};q)$ in terms of partial flags compatible with a nilpotent endomorphism over the finite field of size $1/q$. This yields an expression analogous to a well-known formula for the Hall-Littlewood functions. We show that considering pairs of partial flags and taking Jordan forms leads to a probabilistic bijection between nonnegative-integer matrices and pairs of semistandard tableaux of the same shape, proving the Cauchy identity for $q$-Whittaker functions. We call our probabilistic bijection the $q$-Burge correspondence, and prove that in the limit as $q\to 0$, we recover a description of the classical Burge correspondence (also known as column RSK) due to Rosso (2012). A key step in the proof is the enumeration of an arbitrary double coset of $\text{GL}_n$ modulo two parabolic subgroups, which we find to be of independent interest. As an application, we use the $q$-Burge correspondence to count isomorphism classes of certain modules over the preprojective algebra of a type $A$ quiver (i.e. a path), refined according to their socle filtrations. This develops a connection between the combinatorics of symmetric functions and the representation theory of preprojective algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源