论文标题
OpenRan Gym:AI/ML开发,数据收集和PAWR平台上的O-Ran测试
OpenRAN Gym: AI/ML Development, Data Collection, and Testing for O-RAN on PAWR Platforms
论文作者
论文摘要
开放式无线电访问网络(RAN)体系结构将在下一代蜂窝网络中启用互操作性,开放性和可编程数据驱动控制。但是,开发和测试有效的解决方案,这些解决方案跨越了异质的细胞部署和量表,并在这种不同的环境中优化网络性能是一项复杂的任务,仍然很大程度上没有探索。在本文中,我们介绍了OpenRan Gym,这是一个统一,开放和O-Ran的实验工具箱,用于数据收集,设计,原型制作和测试下一代Open RAN Systems的端到端数据驱动的控制解决方案。 OpenRan Gym扩展并结合了一个独特的解决方案,几个软件框架用于数据收集统计和控制控制,以及轻巧的O-Ran近实时RAN智能控制器(RIC)量身定制,可在实验性无线平台上运行。我们首先概述了Openran Gym的各种建筑组件,并描述了如何按大规模收集数据和设计,训练和测试人工智能和机器学习O-Ran-Commiant应用程序(XAPP)。然后,我们详细描述了如何在软焊接架上测试开发的XAPP,并提供了两个使用OpenRan Gym开发的XAPP的示例,这些XAPP用于控制一个具有7个基站的网络,并在Colosseum测试中部署了42个用户。最后,我们展示了如何通过罗马竞技场上的Openran Gym开发的解决方案,可以将其导出到现实世界中的异质无线平台,例如Arena Testbed以及PAWR计划的粉末和宇宙平台。 OpenRan Gym及其软件组件是开源的,并且对研究社区公开可用。通过指导读者通过Openran Gym进行实验,我们旨在为研究人员和从业人员提供重要的参考,从事实验性开放RAN系统的工作。
Open Radio Access Network (RAN) architectures will enable interoperability, openness and programmable data-driven control in next generation cellular networks. However, developing and testing efficient solutions that generalize across heterogeneous cellular deployments and scales, and that optimize network performance in such diverse environments is a complex task that is still largely unexplored. In this paper we present OpenRAN Gym, a unified, open, and O-RAN-compliant experimental toolbox for data collection, design, prototyping and testing of end-to-end data-driven control solutions for next generation Open RAN systems. OpenRAN Gym extends and combines into a unique solution several software frameworks for data collection of RAN statistics and RAN control, and a lightweight O-RAN near-real-time RAN Intelligent Controller (RIC) tailored to run on experimental wireless platforms. We first provide an overview of the various architectural components of OpenRAN Gym and describe how it is used to collect data and design, train and test artificial intelligence and machine learning O-RAN-compliant applications (xApps) at scale. We then describe in detail how to test the developed xApps on softwarized RANs and provide an example of two xApps developed with OpenRAN Gym that are used to control a network with 7 base stations and 42 users deployed on the Colosseum testbed. Finally, we show how solutions developed with OpenRAN Gym on Colosseum can be exported to real-world, heterogeneous wireless platforms, such as the Arena testbed and the POWDER and COSMOS platforms of the PAWR program. OpenRAN Gym and its software components are open-source and publicly-available to the research community. By guiding the readers through running experiments with OpenRAN Gym, we aim at providing a key reference for researchers and practitioners working on experimental Open RAN systems.