论文标题
深度双流剩余网络,具有上下文关注遥控图像的pansharpenting
Deep dual stream residual network with contextual attention for pansharpening of remote sensing images
论文作者
论文摘要
Pansharpening使用高空间分辨率Panchromatic图像的特征增强了高光谱分辨率多光谱图像的空间细节。有许多传统的pansharpening方法,但是产生表现出高光谱和空间忠诚度的图像仍然是一个开放的问题。最近,深度学习已被用来产生有希望的pansharped图像。但是,这些方法中的大多数通过使用同一网络进行特征提取,对多光谱和全天疗法的图像采用了类似的处理。在这项工作中,我们提出了一个新型的基于双重注意的两流网络。首先使用两个单独的网络进行两个图像的特征提取,这是一种具有注意机制的编码器,可重新校准提取的特征。接下来是融合的特征,形成喂入图像重建网络的紧凑表示形式以产生pansharped图像。使用标准定量评估指标和视觉检查对PLEIADES数据集的实验结果表明,就Pansharped图像质量而言,所提出的方法比其他方法更好。
Pansharpening enhances spatial details of high spectral resolution multispectral images using features of high spatial resolution panchromatic image. There are a number of traditional pansharpening approaches but producing an image exhibiting high spectral and spatial fidelity is still an open problem. Recently, deep learning has been used to produce promising pansharpened images; however, most of these approaches apply similar treatment to both multispectral and panchromatic images by using the same network for feature extraction. In this work, we present present a novel dual attention-based two-stream network. It starts with feature extraction using two separate networks for both images, an encoder with attention mechanism to recalibrate the extracted features. This is followed by fusion of the features forming a compact representation fed into an image reconstruction network to produce a pansharpened image. The experimental results on the Pléiades dataset using standard quantitative evaluation metrics and visual inspection demonstrates that the proposed approach performs better than other approaches in terms of pansharpened image quality.