论文标题

V2X通信中的计算机视觉辅助MMWave光束对齐

Computer Vision Aided mmWave Beam Alignment in V2X Communications

论文作者

Xu, Weihua, Gao, Feifei, Tao, Xiaoming, Zhang, Jianhua, Alkhateeb, Ahmed

论文摘要

例如,视觉信息(例如,由摄像机捕获)可以有效地反映环境散射对象的大小和位置,从而可以用于推断传播方向,接收器功率以及阻塞状态等通信参数。在本文中,我们提出了一个新颖的光束对齐框架,该框架利用了移动用户安装的相机拍摄的图像。具体而言,我们利用3D对象检测技术来提取移动用户周围动态车辆的大小和位置信息,并设计深神经网络(DNN)来推断没有任何试点信号的开发机上的收发器的最佳光束对。此外,为了避免过于频繁或太慢地执行光束对齐,基于视觉信息开发了光束相干时间(BCT)预测方法。与固定BCT的光束对准方法相比,这可以有效地提高传输速率。仿真结果表明,提出的基于视觉的光束对准方法的表现优于现有的激光雷达和基于视觉的解决方案,并且需求较低的硬件成本和交流开销。

Visual information, captured for example by cameras, can effectively reflect the sizes and locations of the environmental scattering objects, and thereby can be used to infer communications parameters like propagation directions, receiver powers, as well as the blockage status. In this paper, we propose a novel beam alignment framework that leverages images taken by cameras installed at the mobile user. Specifically, we utilize 3D object detection techniques to extract the size and location information of the dynamic vehicles around the mobile user, and design a deep neural network (DNN) to infer the optimal beam pair for transceivers without any pilot signal overhead. Moreover, to avoid performing beam alignment too frequently or too slowly, a beam coherence time (BCT) prediction method is developed based on the vision information. This can effectively improve the transmission rate compared with the beam alignment approach with the fixed BCT. Simulation results show that the proposed vision based beam alignment methods outperform the existing LIDAR and vision based solutions, and demand for much lower hardware cost and communication overhead.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源