论文标题

在工业图像中无监督异常本质的深度学习:一项调查

Deep Learning for Unsupervised Anomaly Localization in Industrial Images: A Survey

论文作者

Tao, Xian, Gong, Xinyi, Zhang, Xin, Yan, Shaohua, Adak, Chandranath

论文摘要

当前,在监督学习方法的帮助下,基于深度学习的视觉检查已取得了非常成功的效果。但是,在实际的工业情况下,缺陷样本的稀缺性,注释的成本以及缺乏缺陷的先验知识可能会使基于监督的方法无效。近年来,无监督的异常定位算法已在工业检查任务中广泛使用。本文旨在通过深入学习在工业图像中无视的无视异常定位中的最新成就来帮助该领域的研究人员。该调查回顾了120多个重要出版物,其中涵盖了异常定位的各个方面,主要涵盖了所评论的方法的各种概念,挑战,分类法,基准数据集和定量性能比较。在审查迄今为止的成就时,本文提供了几个未来研究方向的详细预测和分析。这篇综述为对工业异常本地化感兴趣的研究人员提供了详细的技术信息,并希望将其应用于其他领域的异常本质。

Currently, deep learning-based visual inspection has been highly successful with the help of supervised learning methods. However, in real industrial scenarios, the scarcity of defect samples, the cost of annotation, and the lack of a priori knowledge of defects may render supervised-based methods ineffective. In recent years, unsupervised anomaly localization algorithms have become more widely used in industrial inspection tasks. This paper aims to help researchers in this field by comprehensively surveying recent achievements in unsupervised anomaly localization in industrial images using deep learning. The survey reviews more than 120 significant publications covering different aspects of anomaly localization, mainly covering various concepts, challenges, taxonomies, benchmark datasets, and quantitative performance comparisons of the methods reviewed. In reviewing the achievements to date, this paper provides detailed predictions and analysis of several future research directions. This review provides detailed technical information for researchers interested in industrial anomaly localization and who wish to apply it to the localization of anomalies in other fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源