论文标题
超越单个接受场:用于空降激光扫描点云分类的接收场融合和分层网络
Beyond single receptive field: A receptive field fusion-and-stratification network for airborne laser scanning point cloud classification
论文作者
论文摘要
机载激光扫描(ALS)点云的分类是遥感和摄影测量场的关键任务。尽管最近基于深度学习的方法取得了令人满意的表现,但他们忽略了接受场的统一性,这使得ALS点云分类对于区分具有复杂结构和极端规模变化的区域仍然具有挑战性。在本文中,为了配置多受感应的场特征,我们提出了一种新型的接受场融合和分层网络(RFFS-NET)。通过新颖的图形卷积(DGCONV)及其扩展环形扩张卷积(ADCONV)作为基本构建块,使用扩张和环形图融合(DagFusion)模块实现了接受场融合过程,该模块通过捕获膨胀和环状图形具有各种受体区域来获得多动能的场特征表示。具有不同分辨率的点集的接收场分层,因为计算碱基是用嵌套在RFFS-NET中的多级解码器进行的,并由多级接受场聚集损耗(MRFALOSS)驱动,以驱动网络以驱动网络以不同的分辨率在监督标签方向上学习。通过接受场融合和分层,RFFS-NET更适应大型ALS点云中具有复杂结构和极端尺度变化区域的分类。在ISPRS Vaihingen 3D数据集上进行了评估,我们的RFF-NET明显优于MF1的基线方法5.3%,而MIOU的基线方法的总体准确性为82.1%,MF1的总准确度为71.6%,MIOU的MF1和MIOU为58.2%。此外,LASDU数据集和2019 IEEE-GRSS数据融合竞赛数据集的实验显示,RFFS-NET可以实现新的最新分类性能。
The classification of airborne laser scanning (ALS) point clouds is a critical task of remote sensing and photogrammetry fields. Although recent deep learning-based methods have achieved satisfactory performance, they have ignored the unicity of the receptive field, which makes the ALS point cloud classification remain challenging for the distinguishment of the areas with complex structures and extreme scale variations. In this article, for the objective of configuring multi-receptive field features, we propose a novel receptive field fusion-and-stratification network (RFFS-Net). With a novel dilated graph convolution (DGConv) and its extension annular dilated convolution (ADConv) as basic building blocks, the receptive field fusion process is implemented with the dilated and annular graph fusion (DAGFusion) module, which obtains multi-receptive field feature representation through capturing dilated and annular graphs with various receptive regions. The stratification of the receptive fields with point sets of different resolutions as the calculation bases is performed with Multi-level Decoders nested in RFFS-Net and driven by the multi-level receptive field aggregation loss (MRFALoss) to drive the network to learn in the direction of the supervision labels with different resolutions. With receptive field fusion-and-stratification, RFFS-Net is more adaptable to the classification of regions with complex structures and extreme scale variations in large-scale ALS point clouds. Evaluated on the ISPRS Vaihingen 3D dataset, our RFFS-Net significantly outperforms the baseline approach by 5.3% on mF1 and 5.4% on mIoU, accomplishing an overall accuracy of 82.1%, an mF1 of 71.6%, and an mIoU of 58.2%. Furthermore, experiments on the LASDU dataset and the 2019 IEEE-GRSS Data Fusion Contest dataset show that RFFS-Net achieves a new state-of-the-art classification performance.