论文标题

从几个例子中学习:通过深度学习从视网膜图像分类

Learning from few examples: Classifying sex from retinal images via deep learning

论文作者

Berk, Aaron, Ozturan, Gulcenur, Delavari, Parsa, Maberley, David, Yılmaz, Özgür, Oruc, Ipek

论文摘要

深度学习对医学成像产生了极大的兴趣,特别是在使用卷积神经网络(CNN)来开发自动诊断工具方面。其非侵入性获取的设施使视网膜底眼镜成像适合这种自动化方法。使用CNN分析底面图像的最新工作依靠访问大量数据进行培训和验证 - 数十万图像。但是,数据居住权和数据隐私限制阻碍了这种方法在患者机密性是任务的医疗环境中的适用性。在这里,我们展示了在小数据集上进行DL的性能的结果,以从眼底图像中对患者性别进行分类 - 直到最近,底眼前图像中都不存在或可量化的特征。我们微调一个Resnet-152模型,其最后一层已修改以进行二进制分类。在几个实验中,我们使用一个私人(DOV)和一个公共(ODIR)数据源评估小型数据集上下文中的性能。我们的模型使用大约2500底面的图像开发,实现了高达0.72的AUC评分(95%CI:[0.67,0.77])。尽管与文献中的先前工作相比,数据集大小降低了近1000倍,但这仅仅是性能下降仅25%。即使从视网膜图像中进行性别分类等艰巨的任务,我们也会发现使用非常小的数据集可以进行分类。此外,我们在DOV和ODIR之间进行了域的适应实验。探索数据策展对培训和概括性的影响;并调查模型结合在小型开发数据集的背景下最大化CNN分类器性能。

Deep learning has seen tremendous interest in medical imaging, particularly in the use of convolutional neural networks (CNNs) for developing automated diagnostic tools. The facility of its non-invasive acquisition makes retinal fundus imaging amenable to such automated approaches. Recent work in analyzing fundus images using CNNs relies on access to massive data for training and validation - hundreds of thousands of images. However, data residency and data privacy restrictions stymie the applicability of this approach in medical settings where patient confidentiality is a mandate. Here, we showcase results for the performance of DL on small datasets to classify patient sex from fundus images - a trait thought not to be present or quantifiable in fundus images until recently. We fine-tune a Resnet-152 model whose last layer has been modified for binary classification. In several experiments, we assess performance in the small dataset context using one private (DOVS) and one public (ODIR) data source. Our models, developed using approximately 2500 fundus images, achieved test AUC scores of up to 0.72 (95% CI: [0.67, 0.77]). This corresponds to a mere 25% decrease in performance despite a nearly 1000-fold decrease in the dataset size compared to prior work in the literature. Even with a hard task like sex categorization from retinal images, we find that classification is possible with very small datasets. Additionally, we perform domain adaptation experiments between DOVS and ODIR; explore the effect of data curation on training and generalizability; and investigate model ensembling to maximize CNN classifier performance in the context of small development datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源