论文标题

研究趋势和数据增强算法的应用

Research Trends and Applications of Data Augmentation Algorithms

论文作者

Fonseca, Joao, Bacao, Fernando

论文摘要

在机器学习研究社区中,关于模型复杂性与所需数据和计算能力的关系之间的关系存在共识。在现实世界的应用中,这些计算要求并非总是可用的,激发了对正则化方法的研究。此外,当前和过去的研究表明,更简单的分类算法可以在计算机视觉任务上达到最先进的性能,并给定一种强大的方法来人为地增强培训数据集。因此,近年来,数据增强技术已成为流行的研究主题。但是,现有的数据增强方法通常不如其他正则化方法传递。在本文中,我们确定了数据增强算法应用的主要领域,所使用的算法的类型,重要的研究趋势,它们随着时间的流逝和研究差距以及数据增强文献的研究差距。为此,相关文献是通过Scopus数据库收集的。它的分析是在网络科学,文本挖掘和探索性分析方法之后进行的。我们希望读者能够了解数据扩展的潜力,并在数据增强研究中确定未来的研究方向和开放问题。

In the Machine Learning research community, there is a consensus regarding the relationship between model complexity and the required amount of data and computation power. In real world applications, these computational requirements are not always available, motivating research on regularization methods. In addition, current and past research have shown that simpler classification algorithms can reach state-of-the-art performance on computer vision tasks given a robust method to artificially augment the training dataset. Because of this, data augmentation techniques became a popular research topic in recent years. However, existing data augmentation methods are generally less transferable than other regularization methods. In this paper we identify the main areas of application of data augmentation algorithms, the types of algorithms used, significant research trends, their progression over time and research gaps in data augmentation literature. To do this, the related literature was collected through the Scopus database. Its analysis was done following network science, text mining and exploratory analysis approaches. We expect readers to understand the potential of data augmentation, as well as identify future research directions and open questions within data augmentation research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源