论文标题
使用概率深度学习的液体氩时间预测室望远镜概念的低能电子轨道成像
Low-Energy Electron-Track Imaging for a Liquid Argon Time-Projection-Chamber Telescope Concept using Probabilistic Deep Learning
论文作者
论文摘要
GammAtPC是一种MEV规模的单相液体氩气反射室伽马射线望远镜概念,具有新型的基于双尺度像素的电荷读取系统。它有望使对MEV规模的伽马射线的敏感性显着提高,而不是以前的望远镜。新型基于像素的充电读数可以成像由入射伽马射线康普顿相互作用散射的电子轨道。康普顿望远镜重建伽马射线的原始方向的两个主要因素是其能量和位置分辨率。在这项工作中,我们专注于使用深度学习来优化康普顿相互作用中分散的电子的初始位置和方向的重建,包括使用概率模型来估计预测不确定性。我们表明,深度学习模型能够预测MEV尺度伽马射线的康普顿散射位置,从基于模拟像素的数据到大于0.6 mm RMS误差,并且对散射电子的初始方向敏感。我们比较和对比重建应用的不同深度学习不确定性估计算法。此外,我们表明,可以使用康普顿散射位置不确定性的事件估计值来选择最准确地重建的事件,从而改善了位于天空上伽马射线源的起源。
The GammaTPC is an MeV-scale single-phase liquid argon time-projection-chamber gamma-ray telescope concept with a novel dual-scale pixel-based charge-readout system. It promises to enable a significant improvement in sensitivity to MeV-scale gamma-rays over previous telescopes. The novel pixel-based charge readout allows for imaging of the tracks of electrons scattered by Compton interactions of incident gamma-rays. The two primary contributors to the accuracy of a Compton telescope in reconstructing an incident gamma-ray's original direction are its energy and position resolution. In this work, we focus on using deep learning to optimize the reconstruction of the initial position and direction of electrons scattered in Compton interactions, including using probabilistic models to estimate predictive uncertainty. We show that the deep learning models are able to predict locations of Compton scatters of MeV-scale gamma-rays from simulated pixel-based data to better than 0.6 mm RMS error, and are sensitive to the initial direction of the scattered electron. We compare and contrast different deep learning uncertainty estimation algorithms for reconstruction applications. Additionally, we show that event-by-event estimates of the uncertainty of the locations of the Compton scatters can be used to select those events that were reconstructed most accurately, leading to improvement in locating the origin of gamma-ray sources on the sky.