论文标题

NASREC:重量共享神经体系结构搜索推荐系统

NASRec: Weight Sharing Neural Architecture Search for Recommender Systems

论文作者

Zhang, Tunhou, Cheng, Dehua, He, Yuchen, Chen, Zhengxing, Dai, Xiaoliang, Xiong, Liang, Yan, Feng, Li, Hai, Chen, Yiran, Wen, Wei

论文摘要

深度神经网络的兴起为优化推荐系统提供了新的机会。但是,使用深层神经网络优化推荐系统需要精致的建筑制造。我们提出了纳斯里克(Nasrec),这是一种范式训练单个超级网,并通过重量共享有效地产生丰富的模型/子构造。为了克服数据多模式和体系结构异质性挑战,NASREC建立了一个大型的超级网(即搜索空间)来搜索完整的体系结构。 Supernet融合了多功能操作员的选择和密集的连接性,以最大程度地减少人类寻找先验的努力。 Nasrec的量表和异质性构成了几个挑战,例如训练效率低下,运营者的不平衡和降级等级相关性。我们通过提出单操作员任何连接采样,操作员平衡互动模块和训练后微调来应对这些挑战。我们精心策划的模型Nasrecnet在三个点击率(CTR)预测基准方面显示出令人鼓舞的结果,这表明NASREC在手动设计的模型和现有的NAS方法上都具有最先进的性能。我们的工作可在https://github.com/facebookresearch/nasrec上公开获得。

The rise of deep neural networks offers new opportunities in optimizing recommender systems. However, optimizing recommender systems using deep neural networks requires delicate architecture fabrication. We propose NASRec, a paradigm that trains a single supernet and efficiently produces abundant models/sub-architectures by weight sharing. To overcome the data multi-modality and architecture heterogeneity challenges in the recommendation domain, NASRec establishes a large supernet (i.e., search space) to search the full architectures. The supernet incorporates versatile choice of operators and dense connectivity to minimize human efforts for finding priors. The scale and heterogeneity in NASRec impose several challenges, such as training inefficiency, operator-imbalance, and degraded rank correlation. We tackle these challenges by proposing single-operator any-connection sampling, operator-balancing interaction modules, and post-training fine-tuning. Our crafted models, NASRecNet, show promising results on three Click-Through Rates (CTR) prediction benchmarks, indicating that NASRec outperforms both manually designed models and existing NAS methods with state-of-the-art performance. Our work is publicly available at https://github.com/facebookresearch/NasRec.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源