论文标题
高阶Bochner积分的收缩估计
Shrinkage Estimation of Higher Order Bochner Integrals
论文作者
论文摘要
我们考虑在非参数环境中对高级希尔伯特空间的高阶估计估计。我们提出的估计器缩小了Bochner积分量的$ U $统计估计器,而不是希尔伯特领域的预先指定的目标元素。根据$ U $统计的内核的堕落,我们构建了一致的收缩估计量,并具有快速的收敛速度,并产生了Oracle不平等现象,并比较了$ U $统计估计器的风险及其收缩版。令人惊讶的是,我们表明,通过假设$ u $统计的内核完全堕落而设计的收缩估计器也是一致的估计器,即使内核不是完全退化。这项工作涵盖并改进了Krikamol等人,2016年,JMLR和Zhou等,2019; JMVA,它仅处理繁殖核心Hilbert Space中的平均元素和协方差操作员估计。我们还将结果专门针对正常的平均估计,并表明对于$ d \ ge 3 $,拟议的估算器严格根据平均误差的样本平均值进行了改善。
We consider shrinkage estimation of higher order Hilbert space valued Bochner integrals in a non-parametric setting. We propose estimators that shrink the $U$-statistic estimator of the Bochner integral towards a pre-specified target element in the Hilbert space. Depending on the degeneracy of the kernel of the $U$-statistic, we construct consistent shrinkage estimators with fast rates of convergence, and develop oracle inequalities comparing the risks of the the $U$-statistic estimator and its shrinkage version. Surprisingly, we show that the shrinkage estimator designed by assuming complete degeneracy of the kernel of the $U$-statistic is a consistent estimator even when the kernel is not complete degenerate. This work subsumes and improves upon Krikamol et al., 2016, JMLR and Zhou et al., 2019, JMVA, which only handle mean element and covariance operator estimation in a reproducing kernel Hilbert space. We also specialize our results to normal mean estimation and show that for $d\ge 3$, the proposed estimator strictly improves upon the sample mean in terms of the mean squared error.