论文标题

用于分析知识图嵌入的DLCC节点分类基准

The DLCC Node Classification Benchmark for Analyzing Knowledge Graph Embeddings

论文作者

Portisch, Jan, Paulheim, Heiko

论文摘要

知识图嵌入是一种代表学习技术,该技术在知识图中投射实体和关系到连续向量空间。嵌入已经获得了很多吸收,并且已在链接预测和其他下游预测任务中大量使用。对单个任务或一组任务进行评估,以确定其整体绩效。然后,根据嵌入方法在手头的任务上执行的效果来评估评估。尽管如此,几乎没有评估(通常还没有深入了解)嵌入方法实际上正在学习代表哪些信息。 为了填补这一空白,我们介绍了DLCC(描述逻辑类构造函数)基准,这是一种用于分析它们可以代表哪些类的嵌入方法的资源。提出了两个黄金标准,一个基于现实世界知识图DBPEDIA和一个合成金标准。此外,还提供了实现实验协议的评估框架,以便研究人员可以直接使用黄金标准。为了证明DLCC的使用,我们比较了使用黄金标准的多种嵌入方法。我们发现,与黄金标准中定义的不同相关模式相比,dbpedia上的许多DL构造函数实际上都是通过识别不同的相关模式来学习的,并且对于大多数嵌入方法,很难学习特定的DL构造函数,例如基数构造函数。

Knowledge graph embedding is a representation learning technique that projects entities and relations in a knowledge graph to continuous vector spaces. Embeddings have gained a lot of uptake and have been heavily used in link prediction and other downstream prediction tasks. Most approaches are evaluated on a single task or a single group of tasks to determine their overall performance. The evaluation is then assessed in terms of how well the embedding approach performs on the task at hand. Still, it is hardly evaluated (and often not even deeply understood) what information the embedding approaches are actually learning to represent. To fill this gap, we present the DLCC (Description Logic Class Constructors) benchmark, a resource to analyze embedding approaches in terms of which kinds of classes they can represent. Two gold standards are presented, one based on the real-world knowledge graph DBpedia and one synthetic gold standard. In addition, an evaluation framework is provided that implements an experiment protocol so that researchers can directly use the gold standard. To demonstrate the use of DLCC, we compare multiple embedding approaches using the gold standards. We find that many DL constructors on DBpedia are actually learned by recognizing different correlated patterns than those defined in the gold standard and that specific DL constructors, such as cardinality constraints, are particularly hard to be learned for most embedding approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源