论文标题

交替的组作为周期类的产品

Alternating groups as products of cycle classes

论文作者

Kishnani, Harish, Kundu, Rijubrata, Mishra, Sumit Chandra

论文摘要

给定整数$ k,l \ geq 2 $,其中$ l $是奇数或$ k $偶数,让$ n(k,l)$表示最大的整数$ n $,这样$ a_n $的每个元素都是$ k $ k $ $ l $ l $ cyccycles的产物。 2008年,M。Herzog,G。Kaplan和A. Lev证明,如果$ k,l $都是奇怪的,$ 3 \中l $和$ l> 3 $,则是$ n(k,l)= \ frac {2} {3} {3} kl $。他们进一步猜想,如果$ k $均匀,$ 3 \ mid l $,则$ n(k,l)= \ frac {2} {3} {3} kl+1 $。在本文中,我们证明了这个猜想。我们还证明,如果$ k $奇怪,$ n(k,3)= 2k+1 $。

Given integers $k,l\geq 2$, where either $l$ is odd or $k$ is even, let $n(k,l)$ denote the largest integer $n$ such that each element of $A_n$ is a product of $k$ many $l$-cycles. In 2008, M. Herzog, G. Kaplan and A. Lev proved that if $k,l$ both are odd, $3\mid l$ and $l>3$, then $n(k,l)=\frac{2}{3}kl$. They further conjectured that if $k$ is even and $3\mid l$, then $n(k,l)=\frac{2}{3}kl+1$. In this article, we prove this conjecture. We also prove that $n(k,3)=2k+1$ if $k$ is odd.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源